
Case Studies of Fuzzing with Xen

Tamas K Lengyel @tklengyel Balint Varga-Perke
@buherator

2

Disclaimers

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/PerformanceIndex​.

Performance results are based on testing as of dates shown in configurations and may not reflect all publicly available ​updates. See backup

for configuration details. No product or component can be absolutely secure.

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document.

Intel does not control or audit third-party data. You should consult other sources to evaluate accuracy.

Intel disclaims all express and implied warranties, including without limitation, the implied warranties of merchantability, fitness for a particular

purpose, and non-infringement, as well as any warranty arising from course of performance, course of dealing, or usage in trade.

Your costs and results may vary.

Intel technologies may require enabled hardware, software or service activation.

© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries. Other names and

brands may be claimed as the property of others. ​

3

TL;DR

KF/x: https://github.com/intel/kernel-fuzzer-for-xen-project

Full-VM snapshot fuzzer

Open-source (MIT)

Integrates with AFL/AFL++

In this talk – the tale of two vastly different targets

- Linux Virtio

- Symantec Endpoint Protection

https://github.com/intel/kernel-fuzzer-for-xen-project

4

Xen VM forking

Copy-on-write memory in VM forks

Reset vCPU registers and free dirty pages

Parent VM
…

Page X

Page Y

Page Z

…

Fork VM
…

Shared Page X

Copied Page Y

Shared Page Z

…

R

W

X

5

Can run multiple forks &
multiple fuzzing loops
concurrently

Fuzzing with KF/x

Parent

VM

Magic
CPUID
Fork

Sink

VM

panic()
kasan_report()
ubsan_prologue()
…

Fuzz

VM

Add 0xCC

Read input from AFL
Write it to VM’s mem

Reset

Catch a breakpoint
Report crash

Catch Magic CPUID
Report no-crash

Neither: timeout

Analyze

Decode IPT log
Report coverage

Fork

Run

Fuzz

Compile & run target
code with CPUID harness
in place.
No custom compiler
needed!

Any error-handling
function can be a
designated sink point.
Easy to override with
custom list (symbol
name, VA or PA).

6

Design principles behind KF/x

Stable foundation

- All hypervisor components upstream (VM forking, introspection, IPT)

Reduced complexity

- No in-guest agent necessary

Flexible

- Components should be reusable to target any code running in the VM

Extendable

- Integrate with other fuzzers, use different harness mechanism, etc.

7

Limitations

No I/O in fork VMs

- No disk, no network, no screen, no console, no MMIO, no interrupts

- Single vCPU only

Bug enrichment features need to be compiled-in (ASAN, UBSAN)

Target needs to execute normally in a Xen VM

8

Fuzzing Virtio

Part of a larger kernel hardening project in preparation for TDX

See Linux Security Summit ‘21 talk by Elena Reshetova

Attacking guest from the host via shared memory (“DMA”)

Xen doesn’t support Virtio – can’t use KF/x

- Unless .. !

https://static.sched.com/hosted_files/lssna2021/b6/LSS-HardeningLinuxGuestForCCC.pdf

9

VM transplantation!

The idea is simple:

1. Capture system state on KVM

2. Transfer it to Xen

3. Load

4. Fuzz!

10

Capturing the system state

During fuzzing we are running the VM forks with only:

- Memory

- CPU

We are in luck! QEMU QMP command dump-guest-memory

- Creates and ELF file detailing the memory map & memory contents

- Surprise undocumented feature: an ELF note has the CPU register state

We also need the magic CPUID pausing on KVM

https://qemu-project.gitlab.io/qemu/interop/qemu-qmp-ref.html#qapidoc-1288

11

KVM patch to exit

on magic CPUID

QEMU patch to

pause VM

12

Loading state on Xen

1. Create “empty” VM

2. Load memory according to memory map

3. Load CPU register state

- Fix mismatch between segment attribute byte format in ELF vs Xen

13

It’s alive!

14

Back to Virtio

We have a way to save, transplant & fuzz

Just have to figure out what to fuzz..

Virtio will be used for all I/O on TDX 1.0

- Disk, network, console

That’s a lot of different code-paths to cover

- Does anyone even know all the different ways Virtio code is reached?

15

Retargeting existing code

Had a similar challenge while fuzzing xHCI

Made a tool (dmamonitor) that can hook Linux’s DMA API

- Hook dma_alloc_attrs with VMI

- Remove EPT permission from DMA pages

- Log RIP when EPT fault triggers with read-violation

Could really use it here too..

- We are in luck: https://github.com/KVM-VMI/kvm-vmi

https://github.com/KVM-VMI/kvm-vmi

16

Boot Linux with DMA debug

patched to have dummy API

for easier hooking &

force Virtio to go through DMA

API

DMA hook triggers for

DMA page use

Change EPT permission

KVM

Setup
DMA
page

Linux VM boot &
runtime DMA

monitor

E P T

Handle EPT read-fault

Unwind stack & hash return

pointers

If hash is new, snapshot

EPT fault triggers when Virtio

is fetching data from page

1.

3.

2.

4.

17

12

3

4

18

No end-harness

We don’t need any!

1. Transplant snapshot

2. Fork

3. Singlestep up to 300k

4. Check which of the stack return
pointers was reached

5. Inject breakpoint to transplant

6. Fuzz!

19

Results with hardened 5.15-rc6

126,061 DMA accesses observed during boot and basic functioning

13 unique DMA access sites

738 unique call-chains lead to DMA access

70 snapshots fuzzed based on top-5 stack frame uniqueness

7,567,463,809 fuzzing cycles completed (in 2 weeks)

0 issues found (no KASAN/UBSAN/panic/oops)

13 snapshots were found to have hangs when fuzzed

54 snapshots had less then 5 paths discovered

20

No bugs?

We weren’t the first

- Check out VIA: Analyzing Device Interfaces of Protected Virtual Machines

- They fuzzed 5.10 and already reported the sanitizer bugs & got them fixed

- We were able to catch some of the same bugs they found when we targeted 5.10

I still consider this a win

- Tools & techniques all open-sourced & anyone is welcome to replicate

- KF/x target setup & fuzzing can now happen at different systems

- No longer need to setup your target on Xen (can use QEMU/KVM/Simics)

Thanks to the whole lot of folks!
Andrew Cooper, Sundaram Arumugasundaram, Mostafa Elsaid, Andi Kleen, Neelima Krishnan, Sathyanarayanan Kuppuswamy, Lukasz Odzioba, Sebastian Osterlund,
Elena Reshetova, Carlos Villavicencio Sanchez, Casey Schaufler, Steffen Schulz, Mathieu Tarral

https://arxiv.org/pdf/2109.10660.pdf

21

Antivirus fuzzing

• Widespread technology

• Complex parsers implemented in C/C++

• Remotely reachable attack surface

• High privileges

• Prior work:

Antivirus (in)Security, Attacking Antivirus, P0 massacre, Sophail,
Nightmare, The AV Hacker’s Handbook, REing Defender, tons of
privescs, blackhats, and many others (sry if I missed yours!)

https://fahrplan.events.ccc.de/camp/2007/Fahrplan/attachments/1324-AntivirusInSecuritySergioshadownAlvarez.pdf
https://www.blackhat.com/presentations/bh-europe-08/Feng-Xue/Whitepaper/bh-eu-08-xue-WP.pdf
https://bugs.chromium.org/p/project-zero/issues/list?q=antivirus&can=1
https://lock.cmpxchg8b.com/Sophail.pdf
https://www.slideshare.net/JoxeanKoret/the-nightmare-fuzzing-suite-and-blind-code-coverage-fuzzer
https://www.wiley.com/en-ie/The+Antivirus+Hacker's+Handbook-p-9781119028758
https://github.com/0xAlexei/Publications/tree/master/Reverse%20Engineering%20Windows%20Defender
https://bogner.sh/2017/11/avgater-getting-local-admin-by-abusing-the-anti-virus-quarantine/
https://rack911labs.ca/research/exploiting-almost-every-antivirus-software/
https://blog.silentsignal.eu/wp-content/uploads/2018/01/S2_BareKnuckledAVBreaking_180108.pdf
https://github.com/v-p-b/avpwn

22

Antivirus fuzzing

• Complex software

• Binary-only (mostly)

• Performance

• Inspectability

• State

• Diversity
• Products

• Formats

23

KF/x vs. AV

• Reusable harness

• Full inspectability

• Full-system fuzzing

• Written documentation +
well-known platform

24

Symantec Endpoint Protection

25

Symantec Endpoint Protection

• Tamper protection

• Can be disabled, some memory still not accessible

• COM-like architecture

• Complex inter-module dependencies (writeup soon)

• COM is obfuscation: No export symbols, no typelib, indirect calls …

• OS interference

26

Proof-of-Concept

• Multiple bugs discovered by Tavis Ormandy in 2016.

• “Decomposers”

• Unrar, dec2lha, libmspack, … -> ccScanW.dll

• Try to rediscover #823 – “PowerPoint misaligned stream-
cache remote stack buffer overflow”

• Easy to modify nasm PoC

• /GS still not applied to all (non-trivial) functions #YOLO

https://bugs.chromium.org/p/project-zero/issues/detail?id=810&q=symantec&can=1
https://bugs.chromium.org/p/project-zero/issues/detail?id=814&q=symantec&can=1
https://bugs.chromium.org/p/project-zero/issues/detail?id=816&q=symantec&can=1
https://bugs.chromium.org/p/project-zero/issues/detail?id=823&q=symantec&can=1

27

Proof-of-Concept

• #823 allowed quick identification of the relevant parser function and I/O
functions

• KF/x tuning

• Interrupt masking

• sinks.h -> “KiDispatchException” (resolved by Volatility)

• if (addr & 0x80000000) return;

• Large test case
• SEP reads data in 8k chunks

• 6 reads necessary before the bug triggers (no disk in KF/x!)

28Rediscovering CVE-2016-2209 with KF/x

https://vimeo.com/674884046
https://vimeo.com/674884046

29

Handling large inputs

• Large inputs are not ideal for fuzzing in general

• Performance

• Process state

• Mocking I/O

• Tried it, wouldn’t recommend…

• RAM disk works (on Windows too)

• Chained fuzzing stages

• Other traps: swapping, console output, network, …

https://thalium.github.io/blog/posts/windows-full-memory-introspection-with-icebox/

30

Other parsers?

• Rabbit Hole Ghidra extension

• Per-function cumulative cyclomatic complexity

• Ghidra Cpp Class Analyzer

• RTTI info

• Magic numbers

• New target: 7zip decomposer

• Magic number + high complexity + reachable
from C7zEngine class members

https://github.com/v-p-b/rabbithole
https://github.com/astrelsky/Ghidra-Cpp-Class-Analyzer

31

“While this fuzzer runs, I will…”1

• Corpus: 1 file, some txt 7z’d with default options

• AFL++, no knowledge about the file format

• Coverage tracking with Intel PT

• Single core

• < 24h runtime

• ~9M execs ~400-500 exec/s (not a perf talk sry)

• No hang elimination (“loose paths”, timeout optimization, …)

1 How to FAIL at Fuzzing, Prospector

https://seclists.org/dailydave/2010/q4/47

32Fuzzing Symantec Endpoint Protection's 7z parser with KF/x

https://vimeo.com/674883103
https://vimeo.com/674883103

33

7z bug

• Controlled heap overflow

• Detection can be improved by enabling page heap

• Silently fixed?

• Symantec->Broadcom didn’t make investigation easy

Mandatory AFL graph

34Using REVEN to triage the 7z parsing heap overflow discovered with KF/x

https://vimeo.com/674884691
https://vimeo.com/674884691

35

Modularity

• KF/x follows the Unix philosophy

• AFL’s SHMAP became a de-facto standard

• Forkserver-based intergration with LibAFL was trivial

• Timeout/signal handling needed improvement (I/O fail -> hang)

• Independent development of generators, mutators, etc.

• In-memory input passing needs little more work

36

LibAFL

37

Other use-cases

• AV

• Kernel components

• Memory scanners

• DPI/DLP/IPS features

• Games / Anti-cheat

• Sandbox escapes

• Nyx Fuzzer, Fuzzy Snapshots of Firefox IPC

https://nyx-fuzz.com/
https://blog.silentsignal.eu/2021/10/14/fuzzy-snapshots-of-firefox-ipc/

38

Summary

• Trivial vulnerabilities could remain hidden due to the lack of
proper tools

• VM Introspection is a game changer in vulnerability
discovery/analysis

• KF/x is an easy to integrate VMI-based fuzzing harness

39

Thanks!

KF/x: https://github.com/intel/kernel-fuzzer-for-xen-project

Tamas K Lengyel @tklengyel

Balint Varga-Perke @buherator

https://github.com/intel/kernel-fuzzer-for-xen-project

