THE JOURNEY OF PORTING IT TO ANDROID AND THE DETOURS OF FIXING DE-
SIGN VULNERABILITIES

silent

signal Andras Veres-Szentkiralyi

Andras Veres-Szentkiralyi
OSCP, GWAPT, SISE
Silent Signal co-founder
pentester, toolmaker

Distribution is hard

@ Secure p design is harc

inal thougt&s’

EN: https://www.youtube.com/watch?v=JF-ivzWgha4

HU: https://www.youtube.com/watch?v=dP-Pnr7pdpM

a password Store that Perfectly Hides from Itself (No Xaggeration)
distributed yet more secure than naive approaches

free software implementation

https://github.com/stef/libsphinx
https://github.com/stef/pwdsphinx

https://www.youtube.com/watch?v=JF-ivzWqha4
https://www.youtube.com/watch?v=dP-Pnr7pdpM
https://github.com/stef/libsphinx
https://github.com/stef/pwdsphinx

a distributed password manager is worth more if it runs on smartphones
ported SPHINX to Android

in other words: introduced the first alternate implementation
thanks for the funding from NLnet as part of the NGIO PET fund

From Stef’s original SPHINX presentation:

user enters password

“user” chooses random R

a = H(pwd)R

user sends a to storage

storage returns b = a¥

user unblinds b by b7 = H(pwd)* = we’ll call this rwd in this talk

I @ The basics

Distribution is hard

@ Secure p design is harc

inal thougt&s’

the original version had an Ed25519 key for signing management requests

this key was the same for every account they stored
a malicious server could link accounts that belong to the same person

$ find data -name pub | xargs sha256sum | cut -c 1-64 | sort | unig -c
12 €63a01d67bd96d4607e4643e9122f071523d3b1c1d9f42fbad9790b34127726a

generate a random 32-byte “master key”

use keyed hash to derive seeds for account-specific signing keys
easy to generate, hard to correlate

$ find data -name pub | xargs sha256sum | cut -c 1-64 | sort -u | wc -1
1265

the original version had an Ed25519 key for signing management requests
how do we synchronize this key?

the original version had an Ed25519 key for signing management requests
how do we synchronize this key?

QR code offers easy yet secure sharing
for compactness, Base64 and such should be avoided

what if the key gets compromised? = DoS

the original version had an Ed25519 key for signing management requests
how do we synchronize this key?

QR code offers easy yet secure sharing
for compactness, Base64 and such should be avoided

what if the key gets compromised? = DoS

what if we include rwd in the computation?
tradeoff: offline brute force possible in case of a compromised/malicious server

fun auth(socket, hostId, rwd = ByteArray(Q)) {
val nonce = socket.getInputStream().readExactly(AUTH_NONCE_BYTES)
socket.getOutputStream().write(getSignKey(hostId, rwd).sign(nonce))

fun getSignKey(id, rwd = ByteArray(0)) =
Ed25519PrivateKey. fromSeed(key. foldHash(Context.SIGNING, id, rwd))

fun foldHash(context: Context, vararg messages: ByteArray): ByteArray =
context.foldHash(*(1listOf (asBytes) + messages.tolList()).toTypedArray())

fun foldHash(vararg messages: ByteArray): ByteArray =

fessages fold(value (gByieAriayO) L generictash)

the original version stored the list of usernames for each domain locally

every device needs R/W access to this list

the original version stored the list of usernames for each domain locally
every device needs R/W access to this list

solution: (E2EE) BLOB storage

no rwd = no authentication - but | guess it’s fine?

another solution would be to use OPAQUE for management

it could have some nice additional properties
but no tradeoff option to avoid brute force

problem: rwd is just a bunch of high-entropy bits while we need passwords that fit
various policies regarding length and character set

original solution: pack character set and length into 16 bits, encrypt this and
upload/store/retrieve along with the SPHINX process
original protocol runs directly over plain TCP

SPHINX itself doesn’t necessarily require encryption
requests are encrypted using the server public key
response contains SPHINX result and E2EE rule

silent

signal

this doesn’t prevent tracking which account was requested when by eavesdroppers
intermediate solution: convert Ed25519 key to Curve25519 and encrypt the already
encrypted rule again by the server
outside asymmetric layer protects against traffic analysis
inside symmetric layer protects against compromised/malicious server
try:
= readf(path+'/[flI")

except ValueError:
return b'fail' # key not found

with open(path+'/xpub', 'rb') as fd:
xpk = fd.read()
= pysodium.crypto_box_seal ([fIl, xpk)

o+ o+ o+

try:
return sphinxlib.respond(chal, secret)+giig

requests are encrypted using the server’s Curve25519 public key
replay attacks are trivial to perform
no forward secrecy
random protocol/port is easier to track and/or block (public Wi-Fi et al)

requests are encrypted using the server’s Curve25519 public key

replay attacks are trivial to perform
no forward secrecy
random protocol/port is easier to track and/or block (public Wi-Fi et al)

TLS solves all of these and is not that much worse

solves replay attacks (c.f. TLS 1.3 0-RTT) and forward secrecy

usually allowed at least on TCP/443 (HTTPS)

PKI makes server public key distribution an optional hardening
recent versions are not that different from the original protocol

EC certs are a reality (although CA/B limits this to NIST curves)

ECDHE key exchange supports X25519

ChaCha20-Poly1305 cipher suites exist since RFC 7905

session resumption can improve performance

I @ The basics

Distribution is hard

@ Secure p design is harc

inal thougt&s’

rule could contain a XOR mask that should be applied to rwd before applying the
password derivation phase
useful for storing passwords that can’t/shouldn’t be changed
Android offers standard interface to store CC info, this could be used for that as well
why not BLOB? SPHINX returns a valid-looking answer for every passphrase

rule could contain a XOR mask that should be applied to rwd before applying the
password derivation phase
useful for storing passwords that can’t/shouldn’t be changed
Android offers standard interface to store CC info, this could be used for that as well
why not BLOB? SPHINX returns a valid-looking answer for every passphrase
current version encrypts rule with integrity protection using a key derived from rwd

since it depends on rwd, there’s a reliable method to tell whether the passphrase was right
plausible deniability? on-line brute force?

rule could contain a XOR mask that should be applied to rwd before applying the
password derivation phase

useful for storing passwords that can’t/shouldn’t be changed
Android offers standard interface to store CC info, this could be used for that as well
why not BLOB? SPHINX returns a valid-looking answer for every passphrase

current version encrypts rule with integrity protection using a key derived from rwd

since it depends on rwd, there’s a reliable method to tell whether the passphrase was right
plausible deniability? on-line brute force?

better rule encryption plans:

remove explicit integrity protection
remove implicit integrity oracle(s)
add (optional?) “check digit”: n bits of rwd = validity oracle with Prp = 27"

source code and binaries under MIT: https://github.com/dnet/androsphinx
most of it is Kotlin = iOS port should be easier

GUI is kind of complete

core functionality WORKSFORME

pull requests welcome

https://github.com/dnet/androsphinx

THANKS!

0009

ANDRAS VERES-SZENTKIRALYI
vsza@silentsignal.hu
facebook.com/silentsignal.hu

@SilentSignalHU

@dn3t a

mailto:vsza@silentsignal.hu
https://facebook.com/silentsignal.hu
https://twitter.com/SilentSignalHU
https://twitter.com/dn3t

	The basics
	Distribution is hard
	Secure protocol design is hard
	Final thoughts

