
CLIMBING THE SPHINX
THE JOURNEY OF PORTING IT TO ANDROID AND THE DETOURS OF FIXING DE-
SIGN VULNERABILITIES

András Veres-Szentkirályi 2020-08-22



$ whoami

András Veres-Szentkirályi
I OSCP, GWAPT, SISE
I Silent Signal co-founder
I pentester, toolmaker



Fahrplan

1 The basics

2 Distribution is hard

3 Secure protocol design is hard

4 Final thoughts



What is SPHINX?

I EN: https://www.youtube.com/watch?v=JF-ivzWqha4
I HU: https://www.youtube.com/watch?v=dP-Pnr7pdpM
I a password Store that PerfectlyHides from Itself (No Xaggeration)
I distributed yet more secure than naïve approaches
I free so�ware implementation

I https://github.com/stef/libsphinx
I https://github.com/stef/pwdsphinx

https://www.youtube.com/watch?v=JF-ivzWqha4
https://www.youtube.com/watch?v=dP-Pnr7pdpM
https://github.com/stef/libsphinx
https://github.com/stef/pwdsphinx


What did I do?

I a distributed password manager is worth more if it runs on smartphones
I ported SPHINX to Android
I in other words: introduced the first alternate implementation
I thanks for the funding from NLnet as part of the NGI0 PET fund



SPHINX basics needed for this talk

From Stef’s original SPHINX presentation:
1. user enters password
2. “user” chooses random R
3. a = H(pwd)R

4. user sends a to storage
5. storage returns b = aK

6. user unblinds b by b
1
R = H(pwd)K ⇒ we’ll call this rwd in this talk



Fahrplan

1 The basics

2 Distribution is hard

3 Secure protocol design is hard

4 Final thoughts



Malicious server tracking users

I the original version had an Ed25519 key for signing management requests
I this key was the same for every account they stored
I a malicious server could link accounts that belong to the same person

$ find data -name pub | xargs sha256sum | cut -c 1-64 | sort | uniq -c
12 e63a01d67bd96d4607e4643e9122f071523d3b1c1d9f42fbad9790b34127726a

...



Solution preventing user tracking

I generate a random 32-byte “master key”
I use keyed hash to derive seeds for account-specific signing keys
I easy to generate, hard to correlate

$ find data -name pub | xargs sha256sum | cut -c 1-64 | sort -u | wc -l
1265



Device compromise

I the original version had an Ed25519 key for signing management requests
I how do we synchronize this key?

I QR code o�ers easy yet secure sharing
I for compactness, Base64 and such should be avoided

I what if the key gets compromised? ⇒ DoS
I what if we include rwd in the computation?
I tradeo�: o�line brute force possible in case of a compromised/malicious server



Device compromise

I the original version had an Ed25519 key for signing management requests
I how do we synchronize this key?

I QR code o�ers easy yet secure sharing
I for compactness, Base64 and such should be avoided

I what if the key gets compromised? ⇒ DoS

I what if we include rwd in the computation?
I tradeo�: o�line brute force possible in case of a compromised/malicious server



Device compromise

I the original version had an Ed25519 key for signing management requests
I how do we synchronize this key?

I QR code o�ers easy yet secure sharing
I for compactness, Base64 and such should be avoided

I what if the key gets compromised? ⇒ DoS
I what if we include rwd in the computation?
I tradeo�: o�line brute force possible in case of a compromised/malicious server



Device compromise – solution

fun auth(socket, hostId, rwd = ByteArray(0)) {
val nonce = socket.getInputStream().readExactly(AUTH_NONCE_BYTES)
socket.getOutputStream().write(getSignKey(hostId, rwd).sign(nonce))

}

fun getSignKey(id, rwd = ByteArray(0)) =
Ed25519PrivateKey.fromSeed(key.foldHash(Context.SIGNING, id, rwd))

fun foldHash(context: Context, vararg messages: ByteArray): ByteArray =
context.foldHash(*(listOf(asBytes) + messages.toList()).toTypedArray())

fun foldHash(vararg messages: ByteArray): ByteArray =
messages.fold(value.toByteArray(), ::genericHash)



List of usernames

I the original version stored the list of usernames for each domain locally
I every device needs R/W access to this list

I solution: (E2EE) BLOB storage
I no rwd⇒ no authentication – but I guess it’s fine?



List of usernames

I the original version stored the list of usernames for each domain locally
I every device needs R/W access to this list
I solution: (E2EE) BLOB storage
I no rwd⇒ no authentication – but I guess it’s fine?



OPAQUE

I another solution would be to use OPAQUE for management
I it could have some nice additional properties
I but no tradeo� option to avoid brute force



Fahrplan

1 The basics

2 Distribution is hard

3 Secure protocol design is hard

4 Final thoughts



Encrypted rule – original version

I problem: rwd is just a bunch of high-entropy bits while we need passwords that fit
various policies regarding length and character set

I original solution: pack character set and length into 16 bits, encrypt this and
upload/store/retrieve along with the SPHINX process

I original protocol runs directly over plain TCP
I SPHINX itself doesn’t necessarily require encryption
I requests are encrypted using the server public key
I response contains SPHINX result and E2EE rule



Encrypted rule – problem and solution

I this doesn’t prevent tracking which account was requested when by eavesdroppers
I intermediate solution: convert Ed25519 key to Curve25519 and encrypt the already

encrypted rule again by the server
I outside asymmetric layer protects against tra�ic analysis
I inside symmetric layer protects against compromised/malicious server



Further problems

I requests are encrypted using the server’s Curve25519 public key
I replay attacks are trivial to perform
I no forward secrecy
I random protocol/port is easier to track and/or block (public Wi-Fi et al)

I TLS solves all of these and is not that much worse
I solves replay attacks (c.f. TLS 1.3 0-RTT) and forward secrecy
I usually allowed at least on TCP/443 (HTTPS)
I PKI makes server public key distribution an optional hardening

I recent versions are not that di�erent from the original protocol
I EC certs are a reality (although CA/B limits this to NIST curves)
I ECDHE key exchange supports X25519
I ChaCha20-Poly1305 cipher suites exist since RFC 7905
I session resumption can improve performance



Further problems

I requests are encrypted using the server’s Curve25519 public key
I replay attacks are trivial to perform
I no forward secrecy
I random protocol/port is easier to track and/or block (public Wi-Fi et al)

I TLS solves all of these and is not that much worse
I solves replay attacks (c.f. TLS 1.3 0-RTT) and forward secrecy
I usually allowed at least on TCP/443 (HTTPS)
I PKI makes server public key distribution an optional hardening

I recent versions are not that di�erent from the original protocol
I EC certs are a reality (although CA/B limits this to NIST curves)
I ECDHE key exchange supports X25519
I ChaCha20-Poly1305 cipher suites exist since RFC 7905
I session resumption can improve performance



Fahrplan

1 The basics

2 Distribution is hard

3 Secure protocol design is hard

4 Final thoughts



Future plans

I rule could contain a XOR mask that should be applied to rwd before applying the
password derivation phase
I useful for storing passwords that can’t/shouldn’t be changed
I Android o�ers standard interface to store CC info, this could be used for that as well
I why not BLOB? SPHINX returns a valid-looking answer for every passphrase

I current version encrypts rule with integrity protection using a key derived from rwd
I since it depends on rwd, there’s a reliable method to tell whether the passphrase was right
I plausible deniability? on-line brute force?

I better rule encryption plans:
I remove explicit integrity protection
I remove implicit integrity oracle(s)
I add (optional?) “check digit”: n bits of rwd⇒ validity oracle with PFP = 2−n



Future plans

I rule could contain a XOR mask that should be applied to rwd before applying the
password derivation phase
I useful for storing passwords that can’t/shouldn’t be changed
I Android o�ers standard interface to store CC info, this could be used for that as well
I why not BLOB? SPHINX returns a valid-looking answer for every passphrase

I current version encrypts rule with integrity protection using a key derived from rwd
I since it depends on rwd, there’s a reliable method to tell whether the passphrase was right
I plausible deniability? on-line brute force?

I better rule encryption plans:
I remove explicit integrity protection
I remove implicit integrity oracle(s)
I add (optional?) “check digit”: n bits of rwd⇒ validity oracle with PFP = 2−n



Future plans

I rule could contain a XOR mask that should be applied to rwd before applying the
password derivation phase
I useful for storing passwords that can’t/shouldn’t be changed
I Android o�ers standard interface to store CC info, this could be used for that as well
I why not BLOB? SPHINX returns a valid-looking answer for every passphrase

I current version encrypts rule with integrity protection using a key derived from rwd
I since it depends on rwd, there’s a reliable method to tell whether the passphrase was right
I plausible deniability? on-line brute force?

I better rule encryption plans:
I remove explicit integrity protection
I remove implicit integrity oracle(s)
I add (optional?) “check digit”: n bits of rwd⇒ validity oracle with PFP = 2−n



Outro

I source code and binaries under MIT: https://github.com/dnet/androsphinx
I most of it is Kotlin ⇒ iOS port should be easier
I GUI is kind of complete
I core functionality WORKSFORME
I pull requests welcome

https://github.com/dnet/androsphinx


THANKS!

ANDRÁS VERES-SZENTKIRÁLYI

vsza@silentsignal.hu

facebook.com/silentsignal.hu

@SilentSignalHU

@dn3t

mailto:vsza@silentsignal.hu
https://facebook.com/silentsignal.hu
https://twitter.com/SilentSignalHU
https://twitter.com/dn3t

	The basics
	Distribution is hard
	Secure protocol design is hard
	Final thoughts

